Exercise 18

Prove the statement using the ε , δ definition of a limit and illustrate with a diagram like Figure 9.

$$\lim_{x \to -2} (3x + 5) = -1$$

Solution

According to Definition 2, proving this limit is logically equivalent to proving that

if
$$|x - (-2)| < \delta$$
 then $|(3x + 5) - (-1)| < \varepsilon$

for all positive ε . Start by working backwards, looking for a number δ that's greater than |x+2|.

$$|(3x+5) - (-1)| < \varepsilon$$
$$|3x+6| < \varepsilon$$
$$|3(x+2)| < \varepsilon$$
$$3|x+2| < \varepsilon$$
$$|x+2| < \frac{\varepsilon}{3}$$

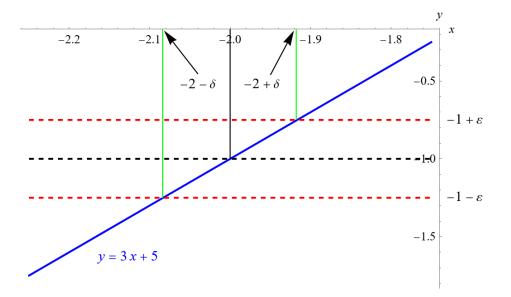
Choose $\delta = \varepsilon/3$. Now, assuming that $|x+2| < \delta$,

$$|(3x+5) - (-1)| = |3x+6|$$

$$= |3(x+2)|$$

$$= 3|x+2|$$

$$< 3\delta$$


$$= 3\left(\frac{\varepsilon}{3}\right)$$

$$= \varepsilon.$$

Therefore, by the precise definition of a limit,

$$\lim_{x \to -2} (3x + 5) = -1.$$

Below is an illustration like Figure 9.

